MATH 3060 Assignment 3 solution

Chan Ki Fung

October 15, 2021

1. (a) It is clear that $d(x, y) = d(y, x)$, $d(x, y) \geq 0$ and $d(x, y) = 0$ if and only if $x = y$. Let $x, y, z \in R_+$, then

$$
d(x, z) = \left| \frac{1}{x} - \frac{1}{z} \right|
$$

= $\left| (\frac{1}{x} - \frac{1}{y}) + (\frac{1}{y} - \frac{1}{z}) \right|$
 $\leq \left| \frac{1}{x} - \frac{1}{y} \right| + \left| \frac{1}{y} - \frac{1}{z} \right|$
= $d(x, y) + d(y, z)$.

 $\Big\}$ I $\overline{}$ $\overline{}$

(b) It is clear that $d_1(x, y) = d_1(y, x), d_1(x, y) \ge 0$ and $d_1(x, y) = 0$ if and only if $x = y$. Next we suppose $x, y, z \in X$, note that

$$
d_1=\frac{d}{1+d}=1-\frac{1}{d}.
$$

We have

$$
d_1(x, y) + d_1(y, z)
$$

=2 - $\frac{1}{1 + d(x, y)} - \frac{1}{1 + d(y, z)}$

$$
\geq 2 - \frac{1}{1 + d(x, y)} - \frac{1}{1 + d(x, y) + d(y, z)}
$$

$$
\geq \left(1 - \frac{1}{1 + d(x, y)}\right) - \left(1 - \frac{1}{1 + d(x, y) + d(y, z)}\right)
$$

$$
\geq 0 + d_1(x, z)
$$

=d₁(x, z).

2. (a) No, condisder the function (which reduced to x^n if $a = 0, b = 1$)

$$
f_n(x) = \left(\frac{x-a}{b-a}\right)^n
$$

Then $d_1(f_n, 0) = (b-a)(n+1)^{-1}$, $d_2(f_n, 0) = (b-a)^{1/2}(2n+1)^{-1/2}$, and $\frac{d_2(f_n,0)}{d_1(f_n,0)} = O(n^{1/2})$

is unbounded.

(b) Yes, beacause by Hölder's inequality

$$
d_1(f,g)
$$

= $\int_a^b |f-g||1|$

$$
\leq \left(\int_a^b |f-g|^2\right)^{1/2} \left(\int_a^b 1\right)^{1/2}
$$

= $(b-a)^{1/2}d_2(f,g).$

3. It is clear that $d(f, g) = d(g, f), d(f, g) \ge 0$ and $d(g, f) = 0$ if and only if $f = g$. Moreover, for $f, g, h \in C^1[a, b]$ and $x, y \in [a, b]$

$$
d(f,g) + d(g,h)
$$

=|f - g|_{\infty} + |f - g|_{\infty} + |f' - g'|_{\infty} + |g - h|_{\infty} + |g' - h'|
\ge |f(x) - g(x)| + |f'(y) - g'(y)| + |g(x) - h(x)| + |g'(y) - h'(y)|
\ge |f(x) - h(x)| + |f'(y) + h'(y)|,

since x, y are arbitrary, we see that $d(f, g) + d(g, h) \ge d(f, h)$. Next, for

$$
f_k(x) = \int_0^{1/k} \sin(ktx)dt
$$

= $\frac{1}{k} \int_0^1 \sin(tx)dt$,

we have

$$
f'_k(x) = \frac{1}{k} \int_0^1 t \cos(tx) dt.
$$

We thus see that $|f_k|_{\infty}$, $|f_k'|_{\infty} < 1/k$, and so

$$
d(f_k, 0) < \frac{2}{k},
$$

thus f_k converges to the zero function.

4. (a) It is clear that $d_{\infty}(f,g) = d_{\infty}(g,f)$ and $d_{\infty}(f,g) \geq 0$. If $d_{\infty}(f,g) =$ 0, then $0 \sup |f - g| = 0$, which means $f = g$. Moreover, suppse $f, g, h \in C[a, b]$ and $x \in [a, b]$

$$
d_{\infty}(f,g) + d_{\infty}(g,h)
$$

= sup $|f - g|$ + sup $|g - h|$

$$
\geq |f(x) - g(x)| + |g(x) - h(x)|
$$

$$
\geq |f(x) - h(x)|.
$$

Since x is arbitrary, we have $d_{\infty}(f, g) + d_{\infty}(g, h) \ge d_{\infty}(f, h)$.

(b) Let $\epsilon > 0$, and take $0 < \delta < \epsilon/(b-a)$. If $f, g \in C^1[a, b]$ and $d_{\infty}(f,g) < \delta$, then

$$
d_{\infty}(Sf, Sg) = \sup_{x} \int_{a}^{x} f(t) - g(t)dt
$$

\n
$$
\leq \sup_{x} \int_{a}^{x} |f(t) - g(t)|dt
$$

\n
$$
\leq \sup_{x} \int_{a}^{x} \delta dt
$$

\n
$$
= \delta(x - a)
$$

\n
$$
\leq \delta(b - a)
$$

\n
$$
< \epsilon.
$$

Therefore, S is (uniformly) continuous on $C^1[a, b]$.